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Abstract

Generating controllable long-sequence music with complete
compositional structure is a fundamental challenge in sym-
bolic music generation, where existing methods primarily
rely on autoregressive models. Constrained by the inherent
severe error accumulation problem of autoregressive mod-
els, existing methods exhibit poor performance in terms of
music quality and structural integrity when generating long-
sequence symbolic music. In this paper, we propose the An-
chored Cyclic Generation (ACG) paradigm, which relies on
anchor features from already identified music to guide sub-
sequent generation during the autoregressive process, effec-
tively mitigating error accumulation in autoregressive meth-
ods. Based on the ACG paradigm, we further propose the
Hierarchical Anchored Cyclic Generation (Hi-ACG) frame-
work, which employs a systematic global-to-local genera-
tion strategy and is highly compatible with our specifically
designed piano token, an efficient musical representation.
The experimental results demonstrate that compared to tra-
ditional autoregressive models, the ACG paradigm achieves
reduces cosine distance by an average of 34.7% between
predicted feature vectors and ground-truth semantic vectors.
In long-sequence symbolic music generation tasks, the Hi-
ACG framework significantly outperforms existing main-
stream methods in both subjective and objective evaluations.
Furthermore, the framework exhibits excellent task general-
ization capabilities, achieving superior performance in related
tasks such as music completion.

Introduction

Symbolic music generation, as a core branch of music gener-
ation, produces discrete musical representations with struc-
tured, interpretable characteristics (Briot, Hadjeres, and Pa-
chet 2017). In recent years, with the rapid development of
deep learning technologies, researchers have worked to im-
prove the musical quality and expressive capability of sym-
bolic music generation, and modeling long-sequence sym-
bolic music has become a new primary challenge.
Long-sequence symbolic music generation requires not
only maintaining local musical coherence but also pre-
serving structural integrity and stylistic consistency at the
global level. Among existing approaches for long-sequence
symbolic music modeling, autoregressive generative mod-
els constitute the mainstream methodology. These methods
achieve sequence generation by predicting subsequent mu-

sical segments based on historical content, but exhibit sig-
nificant limitations in long-sequence modeling. Early au-
toregressive approaches primarily employed RNN or LSTM
architectures, which commonly exhibit degraded musical
quality and stylistic drift when processing longer sequences,
making it difficult to maintain long-term musical consis-
tency. Attention-based methods, such as Transformer and
GPT models, typically combined with musical representa-
tion schemes like MIDI event encoding (Oore et al. 2020)
or ABC notation, demonstrate excellent performance in
short-sequence generation. However, as sequence length
increases, these methods face two core challenges: First,
computational complexity grows exponentially (Child et al.
2019), leading to dramatically reduced training and infer-
ence efficiency; second, error accumulation effects become
increasingly severe, making it difficult to guarantee gen-
eration quality. Furthermore, existing methods struggle to
achieve an ideal balance between precise temporal control
and structural integrity preservation in music. Another cate-
gory of symbolic music generation methods employs diffu-
sion models (Mittal et al. 2021) to decode music from latent
space vectors, but these approaches are typically limited by
the expressive capacity of model outputs, making it difficult
to generate complete long-sequence music within short time
periods.

Addressing these challenges, we propose the Anchored
Cyclic Generation (ACG), a stable paradigm for long-
sequence symbolic music generation. The core innovation
of this paradigm lies in introducing determined musical con-
tent as anchors in each generation cycle to recalibrate the
generation process, thereby effectively correcting potential
error accumulation problems and achieving smooth transi-
tions between musical segments. ACG can ensure local mu-
sical quality while maintaining structural integrity of long-
sequence music. Additionally, compared to traditional meth-
ods, our approach demonstrates significant advantages in
time complexity, substantially improving computational ef-
ficiency. Based on the ACG paradigm, we further propose a
Hierarchical Anchored Cyclic Generation (Hi-ACG) frame-
work to accomplish complete long-sequence symbolic mu-
sic generation tasks, and design a more effective symbolic
music representation scheme to adapt to this framework.
The framework adopts a hierarchical music generation strat-
egy, comprising a sketch information prediction loop and



a refinement information prediction layer. The sketch in-
formation prediction loop is responsible for capturing and
predicting high-level semantic features of music, such as
modality, harmonic progression, and overall structure, en-
coding this information as musical thumbnails to provide
global guidance for subsequent refinement processes. The
refinement information prediction loop focuses on refining
global sketch into concrete musical implementations, pro-
cessing note-level detailed information to ensure local co-
herence and expressiveness of generated music. Experimen-
tal results demonstrate that our proposed Hi-ACG frame-
work can maintain long-term structural and stylistic consis-
tency in music while achieving precise control over gener-
ated music duration.
Overall, our contributions are as follows:

* We present the ACG paradigm, which significantly mit-
igates error accumulation in long-sequence generation
tasks such as symbolic music modeling. Our method
demonstrates improved time complexity and lower com-
putational costs compared to conventional autoregressive
approaches.

* We present Hi-ACG, a hierarchical framework that gen-
erates music from global to local levels. It solves struc-
tural integrity problems in long sequences, provides pre-
cise duration control, and offers high interpretability.

* We propose a Piano Token musical representation—an
efficient tokenization method that converts piano roll data
into musical tokens. This approach is highly compatible
with our Hi-ACG framework while remaining adaptable
to other autoregressive symbolic music generation mod-
els.

* Based on mathematical analysis and experimental valida-
tion, our proposed ACG paradigm and Hi-ACG frame-
work effectively mitigate error accumulation, enhance
the generation quality and structural integrity of long-
sequence symbolic music, and demonstrate superior per-
formance over existing models in both objective and sub-
jective evaluations.

Related Work

Symbolic Music Generation

Symbolic music generation is a key research direction in
deep music generation, aiming to automatically generate
discrete musical representations with musicality and inter-
pretability through algorithms. Early approaches were based
on rules and statistical modeling, such as Ebcioglu’s expert
system for four-part chorale harmonization in the style of
Bach (Ebcioglu 1988), and the multiple viewpoint system
proposed by Conklin and Witten (Conklin and Witten 1995),
which laid the foundation for later data-driven methods.
With the advancement of deep learning, neural networks
have become the mainstream approach. Recurrent Neural
Networks (RNNs) have been widely used to model temporal
dependencies in music (Eck and Schmidhuber 2002)(John-
son 2017)(Sturm et al. 2016). MusicVAE (Roberts et al.
2018), based on a VAE model, introduced a hierarchical

encoder-decoder structure enabling interpolation and vari-
ation of music segments. SeqGAN (Yu et al. 2017) and
MuseGAN (Dong et al. 2017) introduced adversarial mech-
anisms to enhance diversity and style learning. However,
these early methods generally struggled with unstable train-
ing and degraded generation quality when handling long se-
quences.

In recent years, emerging architectures such as Trans-
formers (Vaswani et al. 2017) and diffusion models (Ho,
Jain, and Abbeel 2020) have significantly advanced the
field. RIPO Transformer (Guo, Kang, and Herremans 2023)
leveraged biased sinusoidal embeddings and novel attention
mechanisms to enhance melody modeling. MusER (Li et al.
2023) introduced decoupled modeling of musical elements
and a dual-decoder architecture, enabling emotionally con-
trollable generation. TunesFormer (Wu et al. 2023) com-
bined a two-stage decoder with ABC notation to enable bar-
level controlled generation.

Additionally, ChatMusician (Yuan et al. 2024) showed
how language models can understand and generate music.
It was pretrained on both text and ABC music notation, cre-
ating a unified approach for applying large models to music
tasks.

Long-Sequence Symbolic Music Modeling

Long-sequence symbolic music modeling is a key chal-
lenge in music generation. Traditional autoregressive meth-
ods have several problems like error accumulation, high
computational complexity, and vanishing gradients.

Transformer-based Methods Transformers are widely
used in long-sequence symbolic music generation due to
their ability to model long-range dependencies. Music
Transformer (Huang et al. 2018) first applied Transformer
architecture to symbolic music generation using relative po-
sitional encoding. Longformer (Beltagy, Peters, and Cohan
2020) introduced sparse attention to reduce computational
cost. Museformer (Yu et al. 2022) proposed structure-aware
FC-Attention using bar-level summary tokens and multi-
scale attention. Compound Word Transformer (Hsiao et al.
2021a) introduced compound token representation. BPE-
Music (Fradet et al. 2023) employed subword modeling
to compress token sequences. MuPT (Qu et al. 2024) in-
troduced a scalable pretraining model using ABC notation
and multi-track Transformer design. While powerful, Trans-
formers still face challenges in extremely long-sequence
generation due to error accumulation and quality degrada-
tion.

Diffusion-based Methods Diffusion models offer a non-
autoregressive generation approach with strong fidelity.
Discrete diffusion models (Plasser, Peter, and Widmer
2023) have been applied to symbolic music generation,
demonstrating state-of-the-art sample quality and flexible
note-level infilling capabilities. Diff-Music (Nistal et al.
2024) first applied discrete diffusion to MIDI generation.
Cascaded-Diff (Wang, Min, and Xia 2024) employed a
multi-step diffusion sampling process to generate music
progressively from high-level structure to detailed melody.
However, diffusion models are computationally expensive
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Figure 1: Converting musical scores to piano tokens. (a) Ex-
ample musical score. (b) Piano roll with 7" time steps and D
pitch dimensions. The red-boxed section demonstrates split
details. (c) Piano token representation, where each sub-unit
of the split piano roll is tokenized into a piano token. Piano
tokens in the same column collectively form a block.

for long sequences due to multi-step sampling, and often
struggle with maintaining coherence and duration control.

Hierarchical Music Generation

Hierarchical music generation addresses long-sequence
challenges by decomposing generation into multiple levels
(e.g., sections, phrases, notes), enhancing structure control
and efficiency. Early models like Hierarchical RNN (Zhao,
Li, and Lu 2019) used multi-layer recurrent structures to
learn temporal patterns. MuseNet (Goren, Nachmani, and
Wolf 2021) adopted an implicit hierarchical strategy with
gradually increasing context. MMM (Ens and Pasquier
2020) established implicit structural representations through
multi-track conditional generation mechanisms. Sympho-
nyNet (Liu et al. 2022) modeled movements, phrases, and
notes for symphonic music. Cascaded-Diff (Wang, Min,
and Xia 2024) integrated structural language modeling with
diffusion techniques to achieve hierarchical music gener-
ation from global structure to local details. GraphMuse
(Karystinaios and Widmer 2024) modeled hierarchical con-
trol through musical graphs. Despite progress, current meth-
ods still face issues in inter-level information flow, modeling
coordination, and consistency. Particularly in long-sequence
generation, achieving efficient transmission and precise du-
ration control across levels remains challenging.

In summary, current symbolic music generation methods
face challenges such as error accumulation, low efficiency,
and structural inconsistency in long-sequence modeling. We
propose an anchored cyclic generation paradigm and hier-
archical framework that address these issues through novel
generation mechanisms and architectural designs, thereby
providing new solutions for long-sequence symbolic music
generation.

Method

In this section, we introduce the Piano Token representation,
the anchored cyclic generation paradigm, and the hierarchi-
cal anchored cyclic generation framework designed based
on this paradigm for generating high-quality long-sequence
symbolic music.

Piano Token Representation

Common symbolic music representations primarily use
MIDI event-based representations, such as REMI(Huang
and Yang 2020)or Compound Word representations(Hsiao
et al. 2021b), or ABC notation representations. The se-
quence length of these representation forms exhibits a non-
linear relationship with music duration. When music com-
plexity is high and note changes are frequent, extremely long
representation sequences are often required. This typically
causes severe error accumulation and missing important to-
kens during music sequence generation.

To address this issue, we design the piano token represen-
tation based on piano roll, which is a more efficient music
representation method shown in Figure 1. The piano token
representation explicitly encodes temporal sequences, where
the sequence length L is positively correlated with music du-
ration 7', expressed as L o< T'. This representation method
maps continuous music representations to sparse discrete
representations through tokenization while preserving the
original spatiotemporal structure. Specifically, we first split
the piano roll representation into N patches, where each
patch contains d x t elements from the piano roll, with d
representing the number of pitch dimensions covered by a
single patch and ¢ denoting the number of time steps cov-
ered by a single patch. We then tokenize each patch using a
single token to encode its complete content, achieving data
compression. Since the piano roll representation is a binary
matrix of shape D x T, where D represents the pitch di-
mension and 7' denotes the number of time steps. Each el-
ement z,; € {0,1} indicates whether pitch p is activated
at timestep t. The partitioned patches retain this characteris-
tic, so the vocabulary size corresponding to the piano token
representation is 2¢** . By adjusting the values of d and t,
we can flexibly control the patch size, thereby regulating the
vocabulary scale and encoded sequence length to accommo-
date different application scenarios. After tokenization, the
original matrix of size D X T is converted into a piano to-
ken matrix of shape % X % The piano token matrix repre-
sentation serves as the core representational for music and
participates in subsequent music generation processes.

We define each column of the piano token matrix as a
block B, which contains musical information from ¢ con-
secutive time steps in the original piano roll representation.
Each block contains complete musical fragments within
short time intervals, and this block structure also plays a cru-
cial role in subsequent music generation workflows.

Anchored Cyclic Generation Paradigm

Error accumulation is a common problem in autoregressive
models, where discrepancies exist between the model’s gen-
eration and optimal prediction value in each iteration round,
and these errors accumulate throughout the iterative pro-
cess, ultimately leading to severe degradation of the over-
all generation quality. Error accumulation can be regarded
as the primary factor contributing to the degradation of
generation quality in long-sequence music generation. To
mitigate this issue, we propose the ACG, a novel genera-
tion paradigm that can significantly reduce error accumula-
tion during long sequence generation. We draw inspiration
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Figure 2: ACG Paradigm Architecture. The embedding layer encodes the conditional information into feature vectors, concate-
nated with anchor features from existing content (anchor features are absent at the initial time step) and feeds into the semantic
prediction model. The semantic prediction model generates semantic features z for the current time step and feeds it to semantic
reconstruction model, which autoregressively generate a sequence of features corresponding to piano tokens s through multiple
iterations. The generated token feature s concatenates with semantic feature z for iteration. The n piano tokens combine into a
block as final output for semantic feature z, then convert into an anchor feature for iterative generation by re-embedding model.

from teacher forcing training methodology: when generat-
ing symbolic music sequences, at each iteration, the model
predicts features for the next time step ¢ based on deter-
mined historical information, which we call anchor features
Ai—1 = {a1,as,as, ..., a;_1 }, thereby minimizing the error
between the current prediction and the optimal value.

As illustrated in Figure 2, an ACG structure com-
prises three key components: a semantic prediction model,
a semantic reconstruction model, and a specialized re-
embedding layer. The semantic prediction model and se-
mantic reconstruction model consist of two cascaded trans-
former decoder models. The semantic prediction model is
responsible for predicting the semantic features z; of the cur-
rent time step ¢ based on input conditions C' and anchor fea-
tures A;_;. It predicts the content of a whole block, which
contains token combinations’ information. The expression is
as follows:

Zé = fsem(At—la Cv t; 0sem)

The semantic reconstruction model decodes the semantic
feature z; and projects it into Piano Token sequence St ., =
{st,sh,s%, ..., st } via an additional linear layer, where n de-
notes the sequence length. The semantic reconstruction pro-

cess can be expressed as follows:

Sttoken = fproj (frec(zz; 9rec)§ Wproj7 bproj)

The re-embedding layer is a neural network composed of
multiple fully connected layers, which is responsible for
remapping the reconstructed token sequence St . back to
anchor features a; for generation in the next iteration.

ar = freemb(Bt; ereemb)

In our design, the three components of the ACG paradigm
are jointly trained in an end-to-end manner. It should be

noted that in the ACG paradigm, the semantic prediction
model does not independently generate all latent vectors
A of semantic information before the semantic restoration
model sequentially restores them to token representations.
In our method, the semantic prediction model first predicts
the semantic latent feature z; for the current time step ¢ and
transmits it to the semantic restoration model and additional
projection layer, which then autoregressively decodes a se-
quence St containing all tokens in the block based on
feature z;. Each element in sequence St is stacked and
rearranged to form the final output block B; for the current
time step. Additionally, we treat the block B; obtained in
each iteration as confirmed historical information and input
B, into a re-embedding layer to transform it back into an
anchor semantic feature a;. The anchor feature a; for the
current time step is concatenated with features from all pre-
vious time steps A;_; and fed into the semantic decoder for
semantic feature prediction of the next time step. This an-
chor feature derived from confirmed content can better ap-
proximate the optimal feature, guiding the semantic predic-
tion model to achieve more accurate outputs through what
we refer to as the anchor mechanism. In the task of gener-
ating subsequent musical content given an opening, we ex-
tracted 100 samples each of semantic features z’ from the
ACG paradigm and semantic features z from conventional
autoregressive methods, and compared them by computing
cosine distances with ground truth, thereby confirming that
our hypothesis holds in practice. The result shown in Figure
3. Compared to traditional autoregressive models, the ACG
paradigm achieves an average reduction of 34.7% in cosine
distance between predicted feature vectors and ground-truth
semantic vectors. For the mathematical proof of the effec-
tiveness of the ACG paradigm, please refer to the supple-
mentary materials.

This demonstrates that our proposed ACG paradigm ef-
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Figure 3: Cosine distances between predicted and ground
truth feature vectors for the ACG paradigm and conventional
autoregressive models across iterations. The ACG paradigm
consistently achieves lower cosine distances compared to
conventional autoregressive models.

fectively mitigates the error accumulation inherent in au-
toregressive models, thereby achieving superior generation
performance. In terms of time complexity, ACG also outper-
forms conventional approaches. The time complexity O(L?)
of conventional autoregressive models scales quadratically
with increasing sequence length L, whereas the time com-
plexity of the ACG paradigm is O(L2,,)) + Lsem x O(L2,),
where Lgp, represents the length of semantic features se-
quence Z’, and Ly represents the length of token sequence
S. The ACG paradigm decomposes autoregressive genera-
tion tasks into a two-stage subtask framework, implemented
through employing separate semantic prediction and seman-
tic restoration models. The semantic prediction model oper-
ates solely at the block level to predict semantic features,
while the semantic restoration model focuses exclusively
on reconstructing fixed-length token sequences from block
features. This task decomposition significantly reduces the
computational burden of models in long-sequence autore-
gressive generation tasks, with the efficiency gains becom-
ing more pronounced as sequence length increases.

Hierarchical Anchored Cyclic Generation
Framework

We propose the Hi-ACG framework, built upon the ACG
paradigm, to generate high-quality, long-sequence symbolic
music with complete structure and precise duration control.
This cascaded model architecture embodies a core princi-
ple: simulating human compositional cognition through hi-
erarchical music generation that proceeds from global struc-
ture to local refinement. This approach mirrors how com-
posers naturally work—first establishing the overall struc-
tural framework, then gradually developing specific musical
details. By doing so, the framework maintains both global
musical coherence and rich local expression, ultimately pro-
ducing more natural and musically acceptable compositions.

The Hi-ACG framework features two interconnected
loops: the Sketch Loop and the Refinement Loop. The
Sketch Loop generates high-level structural sketches that es-
tablish the compositional backbone. Building on this sketch
information, the Refinement Loop focuses on creating rich
expressive details, transforming abstract structures into con-

crete musical content. This clear division of responsibilities
allows the framework to optimize music generation at differ-
ent levels of abstraction, ensuring both structural coherence
in long sequences and precise control over duration while
enhancing local musical quality.

We propose an approach where the Sketch Loop and Re-
finement Loop are trained separately with different objec-
tives. We obtain training data for the Sketch Loop by resam-
pling real music data, performing two samplings within each
measure to extract each measure’s core musical information.
This approach preserves the main musical characteristics of
each measure while significantly reducing sequence length.
After resampling the entire composition, we convert the re-
sults to piano token representation for Sketch Loop training.
The Refinement Loop uses paired training, utilizing sketches
generated by the Sketch Loop paired with corresponding
complete musical pieces. We also convert the training data to
piano token representation to maintain consistency. During
training, the Refinement Loop learns to expand sketch infor-
mation into complete, detailed musical content, learning to
map abstract structures to concrete musical expressions.

During the music generation phase, the framework fol-
lows this workflow: First, the Sketch Loop generates a piano
token matrix of the complete composition sketch based on
conditions such as duration or musical input, providing the
overall structural framework. The sketch is then segmented
into sequence Bgech = {b1, b2, ..., bt } block-by-block, with
each element in sequence Bgewch passed individually to the
Refinement Loop for processing. The Refinement Loop uses
each input block b; to expand and generate corresponding
detailed musical content Biefinement- Finally, all refined block
sequences are combined in chronological order to form
the complete musical work. Through this hierarchical gen-
eration strategy, our framework can generate high-quality
long-sequence symbolic music with rich detailed expression
while ensuring overall structural coherence. For structural
control, the global planning of the Sketch Loop ensures that
generated music maintains coherent overall structure, avoid-
ing the structural drift commonly seen in long-sequence gen-
eration. To ensure quality, the Refinement Loop focuses on
optimizing local musical expression, producing music that
maintains structural coherence while featuring rich musi-
cal details and expressiveness. Moreover, the hierarchical
design provides the framework with strong scalability, en-
abling it to handle music sequences of arbitrary length and
making it technically feasible to generate ultra-long musical
compositions.

Experiment
To validate the Hi-ACG framework’s effectiveness, we con-
duct comprehensive objective and subjective experiments
evaluating the generation quality. This chapter presents the
experimental setup and evaluation results.

Experimental Setup

Dataset We train our model on the MuseScore dataset
and the POP909 dataset. The MuseScore dataset contains
140,000 two-track piano scores lasting 1-3 minutes. We con-
vert them to piano rolls in multi-hot array format, with a
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condition and optional musical constraints as input, generating a musical sketch with coarse-grained information for the entire
composition using block-by-block processing. The refinement loop then sequentially processes the sketch blocks, transforming

each into multiple detailed blocks with rich musical representations.

minimum resolution of 1/16 beat. Each time step preserves
88 pitches corresponding to standard piano keys. We en-
code the piano rolls into piano tokens to train our model.
For POP909, we similarly convert them into piano roll rep-
resentations with the same temporal resolution, then trans-
form them into piano tokens.

Details During data preprocessing in our experiments, we
set d to 2 and ¢ to 4, with each token corresponding to a
patch range of 2 x 4 elements. This results in a piano to-
kens matrix of size 44 x (£). For model hyperparameters, in
the ACG paradigm, the semantic prediction model contains
12 self-attention layers, the semantic reconstruction model
contains 6 self-attention layers, and the re-embedding layer
consists of 3 fully connected layers, all models use a hidden
dimension of 1024. We trained on the MuseScore data for
30 epochs using 4 NVIDIA RTX 4090 GPUs, then contin-
ued fine-tuning our pre-trained model using POP909 data to
improve generation performance.

Evaluation

Baseline We selected baseline models from two different
architectures for comparison with our model: Transformer-
based and diffusion-based approaches. The Transformer-
based models include the BPE Transformer model and the
Music Transformer model. BPE Transformer introduces the
BPE tokenization technique from natural language process-
ing into symbolic music generation. This approach is par-
ticularly effective for long-sequence symbolic music gen-
eration, while also showing superior performance in mu-
sic score completion tasks based on musical input, which
closely aligns with our model’s objectives. Similarly, Music
Transformer is capable of performing long-sequence sym-
bolic music generation and music score completion tasks
based on musical input. Additionally, we included the lat-
est diffusion-based model, Cascaded-Diff, in our compar-

ison. Cascaded-Diff is currently the only diffusion model
capable of long-sequence symbolic music generation and
demonstrates high music generation quality. We fine-tuned
the baseline models on the MuseScore and POP909 datasets
to ensure a fair comparison with our model. Furthermore,
we conducted ablation studies to demonstrate the effective-
ness of each component in our proposed Hi-ACG frame-
work. In the experimental results, “GT” denotes ground
truth, “MT” denotes Music Transformer, “BT”’ denotes BPE
Transformer, and “CD” denotes Cascaded-Diff. In the abla-
tion study section, “Full” denotes the complete framework,
“SL” denotes the sketch loop, and “SP” denotes the semantic
prediction.

Objective Evaluation To objectively evaluate of the mu-
sic generated by various models, we design specialized mu-
sic evaluation metrics. The evaluation metrics encompass
four aspects, assessing both model-generated and real mu-
sic from pitch, rhythm, harmony, and melody. Pitch evalu-
ation employs information entropy to quantify note diver-
sity within a musical piece. The information entropy is cal-
culated as follows, where p(4) represents the probability of
note occurrence. Higher pitch entropy indicates greater pitch
diversity with a more uniform distribution.

Hyien = — »_ p(i) log, p(i)
i=1
Similar to pitch evaluation, rhythm evaluation employs en-
tropy to measure rthythmic complexity by analyzing the fre-
quency and distribution of various note durations. Here, p(j)
denotes the probability of each duration type.

Hrhythm = - Zp(j) 10g2 p(])
j=1



Pitch Rhythm Harmony Melody LLM score

GT 1.92 143 0.87 0.52 3.50
MT 1.95 1.66 0.94 0.41 2.25
BT 316 1.74 0.90 0.55 243
CD 326 2.36 0.91 0.66 3.37
w/o SL & SP 2.44 1.80 0.94 0.40 222
w/o SL 1.32 1.71 0.84 0.62 3.06
Full 1.43 1.69 0.89 0.60 3.10

Table 1: Objective evaluation results for 30-seconds un-
conditional music generation. Performance improves when
Pitch, Rhythm, Harmony, and Melody values match the
ground truth. Higher LLM scores show better performance.

Pitch Rhythm Harmony Melody LLM score

GT 220 1.06 0.90 0.50 3.55
MT 349 3.19 0.92 0.29 2.29
BT 3.16 1.74 0.90 0.55 2.45
CD 3.38 2.30 0.91 0.90 2.89
w/o SL & SP - - - - -

w/o SL 1.56 0.84 0.83 0.41 2.92
Full 243 1.03 0.90 0.47 3.17

Table 2: Objective evaluation results for 2-minutes uncondi-
tional music generation. Performance improves when Pitch,
Rhythm, Harmony, and Melody values match the ground
truth. Higher LLM scores show better performance.

Harmonic consistency evaluates the degree of matching be-
tween notes and tonality. We identify the musical tonality
using Music21’s (Cuthbert and Ariza 2010) key analysis al-
gorithm, then calculate the proportion of notes that belong
to the tonal distribution. The melodic smoothness metric is
based on melodic fluency principles in music theory, as-
sessing smoothness by analyzing the size of intervals be-
tween adjacent notes in the melody. Specifically, we define
intervals exceeding a perfect fourth as large leaps and cal-
culate the proportion of large leaps in the melody, where
more frequent large leaps reduce the perceived musical qual-
ity. Additionally, we employ an LLM for music quality as-
sessment. We use the Qwen3-235B-A22B model to evaluate
musical quality, providing comprehensive scores consider-
ing multiple dimensions including melody, rhythm, and ar-
rangement. The scoring employs the MOS (Mean Opinion
Score) method with a score range of 1-5, where 1 is the
lowest and 5 is the highest. We conduct objective evalua-
tion across three tasks: 30-second short music generation,
2-minute long music generation, and conditional input long
music generation. Short music generation evaluation repre-
sents local music quality, while long music generation as-
sesses fluency, structure, and compositional completeness.
Conditional music generation show the model’s ability to
continue music from given input, demonstrating music un-
derstanding and completion capabilities.

Subjective Evaluation In music generation tasks, subjec-
tive evaluation often provides a more intuitive reflection of
the quality of the generated music’s impact on listeners. We
also conducted a comparison between our model and the
baseline in subjective evaluation. The subjective evaluation

Pitch Rhythm Harmony Melody LLM score

GT 2.20 1.06 0.90 0.50 3.55
MT 3773 3.53 0.96 0.37 2.24
BT 3.89 3.20 0.88 0.66 2.33
CD - - - - -

w/o SL & SP - - - - -

w/o SL 2.69 1.90 0.99 0.33 3.05
Full 219 1.27 0.91 0.43 3.30

Table 3: Objective evaluation results for 2-minutes condi-
tional music generation.Performance improves when Pitch,
Rhythm, Harmony, and Melody values match the ground
truth. Higher LLM scores show better performance.

GT MT BT CD w/oSL &SP w/oSL Full
Score 3.31 1.96 2.05 291 1.85 252 3.02

Table 4: Subjective evaluation for 2-minutes music genera-
tion use MOS evaluation, higher score indicate superior per-
formance.

employed the MOS method, where evaluators rate each mu-
sic sample on a scale from 1 to 5, with higher scores indi-
cating superior musical quality. Evaluators were blinded to
which model generated each music sample. The evaluators
were 79 volunteers with music education backgrounds , in-
cluding 46 males and 33 females.

Conclusion

Long-sequence symbolic music generation faces a critical
challenge: error accumulation that degrades musical struc-
ture and fluency. To address this, we introduce the ACG
paradigm with piano token representation and propose a hi-
erarchical music generation framework. This approach en-
hances generation quality while enabling flexible condi-
tional music generation. Our experiments demonstrate sub-
stantial improvements in both statistical metrics and over-
all music quality, with both objective metrics and subjective
evaluations consistently validating our approach’s superior-
ity. The ACG paradigm represents a major breakthrough in
long-sequence symbolic music generation, providing a flex-
ible framework easily integrated into existing autoregres-
sive models. The system adapts well to downstream tasks
through fine-tuning and offers valuable insights for music
understanding applications. These foundational principles
pave the way for more sophisticated and controllable sym-
bolic music generation systems.

While our method shows promising results, it currently
lacks fine-grained control during generation, limiting the
ability to dynamically adjust the autoregressive process for
personalized and flexible music creation. Future work will
address this limitation by integrating additional tokens that
capture musical expression and structural elements into the
piano token representation, which will substantially im-
prove generation controllability. We also plan to extend the
ACG paradigm to handle more complex scenarios, including
multi-track symbolic music generation.
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